Geotermia, experiencia Mundial y proyectos en la región

5to. Congreso Internacional Bolivia Gas & Energía 2012

DESARROLLO Y ENERGÍAS Tendencias técnico-comerciales de fuentes energéticas sostenibles 22 : 23 AGOSTO : SANTA CRUZ

Siemens Energy Oil & Gas Division

Industrial Power

August 23, 2012

Content

Siemens Vision for Renewables

Geothermal Energy – what is it?

Austral-Andina Regional Experience

Central American Regional Experience

Geothermal Energy in Bolivia – Unique Challenges

Geothermal Energy in Bolivia – Unique Solutions

Why Geo ? A paradigm shift is occurring that will create a sustainable energy system

SIEMENS

19 th century	20 th century	Start of 21 st century	End of 21 st century				
Electrification of society "Age of coal"	Large-scale generation of electrical energy "Age of fossil fuels"	 Challenges force process of rethinking: Demographic shift Resources becoming scarce Climate change 	The new power age Electricity becomes <i>the</i> form of energy for most applications in daily life				
Energy s	system not sustainable	Sustainable energy system					
Power supply limited to individual regions or urban areas	Interconnected network grids, centralized power generation by "estimated" consumption	Increasingly decentralized, fluctuating power generation through renewable energies	Intelligent grids enable high percentage of renewable energies, e.g. with eCars and heat pumps				
Fossil fuels, water power	Fossil fuels, water power water power		Renewable energies, "clean" coal, gas				
No environmental concerns Environmental awareness							

Content

Siemens Vision for Renewables Geothermal Energy – what is it? **Austral-Andina Regional Experience Central & Mezo American Regional Experience Geothermal Energy in Bolivia – Unique Challenges Geothermal Energy in Bolivia – Unique Solutions**

Geothermal Energy – Where is it?

Geothermal Energy – What is it?

Plate Tectonic Process

Geothermal Energy – Where is it?

Distribution of Lithospheric Plates and Active Volcanoes

Page 7

Andesitic Volcano Geothermal Resource

Geothermal plants – how they work

Dry Steam Cycle

Power plants using dry steam systems were the first type of geothermal power generation plants built. They use the steam from the geothermal reservoir as it comes from wells and route it directly through turbine/generator units to produce electricity. An example of dry steam generation operation is at the Geysers in northern California

Geothermal plants – how they work

Flashed Steam Cycle

Flash steam plants are the most common type of geothermal power generation plants in operation today. They use water at temperatures greater than 360 °F (182 °C) that is pumped under high pressure to the generation equipment at the surface. Upon reaching the generation equipment, the pressure is suddenly reduced, allowing some of the hot water to convert or "flash" into steam. This steam is then used to power the turbine/generator units to produce electricity. The remaining hot water not flashed into steam, and the water condensed from the steam is generally pumped back into the reservoir. An example of an area using the flash steam operation is the Navy I flash geothermal at the Coso geothermal field

Geothermal plants – how they work

Binary Organic Rankin Cycle

Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. In the Binary Systems, the water from the geothermal reservoir is used to heat another "working fluid" which is vaporized and used to turn the turbine/generator units. The geothermal water and the "working fluid" are each confined in separate circulating systems or "closed loops" and never come in contact with each other. The advantage of the Binary Cycle plant is that they can operate with lower temperature waters (225 °F -360 °F) (107 °C -182 °C), by using working fluids that have an even lower boiling point than water. They also produce no air emissions. An example of an area using a Binary Cycle power generation system is the Mammoth Pacific binary geothermal power plants at Casa Diablo Geothermal field

Global Geothermal Market

- Ring of fire = hottest known geothermal regions
- Current installed capacity in region
- Potential capacity in region

Current Global Capacity ~ 10 GW Potential Capacity approaches 200 GW

The countries with the largest installed geothermal power generation capacity

are the United States, Indonesia, and the Philippines

Geothermal Energy Comparison with other Renewables

SIEMENS

8,000

10,000

Geothermal energy can be used around the clock, with average capacity factors of around 90-95%

High availability of base load power

Cost-effective compared to other renewable energy sources

is about \$4 million per MW

installed capacity

Page 13

Content

Siemens Vision for Renewables

Geothermal Energy – what is it?

Austral-Andina Regional Experience

Central & Mezo American Regional Experience

Geothermal Energy in Bolivia – Unique Challenges

Geothermal Energy in Bolivia – Unique Solutions

Argentina – Earth Heat Resources - Copahue

The Copahue project area is located in the western part of Neuquén Province.

Time Line:

- 1970s Geothermal exploration activities begin
- •1986-1987 670kW binary demonstration plant converted to road heating in 1997-1998
- March 2011 Earth Heat Resources engaged Sinclair Knight Merz (SKM)
- April 2012 SKM announces Phase I field studies complete
- Est. COD: 2015

Copahue Village Circa 1937

Copahue project site today

Geothermal Development in Chile

- Early exploration began at Antofagasta in 1908.
- Formal exploration under UNDP & CORFO began in 1968 and ended in 1976 under Pinochet.
- In 2000, due to volatility in oil prices and gas deliveries, coupled with increasing electrical demand, resulted in the Chilean government passing "The Law of Geothermal Concessions" which continues to create interest.

Tatio Geysers

Punto 3

Liolaemus barbarae

Announced Project Austral-Andina Region

Argentina Copahue Los Desoblados **Tuzgle-Tocamar-Jujuy** Anetta Chile **Cerro Pabello Puchildiza Curacautin/Tolhuaca** Mariposa Apacheta

Colpitas Juncalito Pampa Lirima Paniri Polloquere Tinguirrica Tuyajto **Bolivia** Laguna Colorada Columbia Isagen

Content

Siemens Vision for Renewables

Geothermal Energy – what is it?

Austral-Andina Regional Experience

Central & Mezo American Regional Experience

Geothermal Energy in Bolivia – Unique Challenges

Geothermal Energy in Bolivia – Unique Solutions

El Salvador – Ahuachapan

El Salvador – Ahuachapan Pay attention to initial design to avoid unnecessary repairs in future years

SIEMENS

Ormat – Momotombo – Sophisticated Repair Required

- Frequent tectonic activity caused on-going T-G train misalignment.
- Resulting increased alternating stress cracked rotor almost in half.
- Crack in shaft-wheel radius propagated to within 1.5 cm of bore.
- Failure analysis consisted of Metallurgical Analysis, FEA and Site Alignment Survey.
- <u>Conclusion</u>: Failure occurred due to miss-alignment causing alternating stress & reduction in material endurance strength due to corrosion attack.
- Solution: Weld repair rotor, 12 Cr cladding of radius & realignment of turbine-generator.
- Repair could not be executed in Nicaragua.

Design plant so as to avoid engineered repairs

SIEMENS

Such repairs require rotor transport to the US or Europe **SIEMENS**

Page 23

Content

Siemens Vision for Renewables

Geothermal Energy – what is it?

Austral-Andina Regional Experience

Central & Mezo American Regional Experience

Geothermal Energy in Bolivia – Unique Challenges

Geothermal Energy in Bolivia – Unique Solutions

Geothermal Project Timeline

Geothermal Energy in Bolivia – Unique Challenges

© Siemens AG 2011. All rights rese

Page 26

Geothermal Energy in Bolivia – Unique Challenges

Challenges – Size & Location

SST-500 GEO Dual Flash Steam Turbine

SST-500 GEO Single Flash Steam Turbine

Content

Siemens Vision for Renewables

Geothermal Energy – what is it?

Austral-Andina Regional Experience

Central & Mezo American Regional Experience

Geothermal Energy in Bolivia – Unique Challenges

Geothermal Energy in Bolivia – Unique Solutions

Key metrics for geothermal success

Geothermal Energy in Bolivia – Unique Solutions Leading to PPP

	Structure	Financing	Construction	Operation	Ownership	Off-taker Payment
	BOT/BOO	Private (20-30 yrs)	Private	Private	Private f/term of contract	Tariffs over contract term (20- 30 yrs)
	BT/BTO	Private (2-5 yrs)	Private	Off-taker (BT) Private (BTO)	Off-taker/ Government	Upfront or shortly after construction
	BLT/BOLT	Private (10-12 yrs)	Private	Off-taker (BLT) Private (BOLT)	Private for term of lease; transfer to off-taker	Lease payments
	JV/JS	Joint	Joint	Joint	Joint	Tariff over term of contract
	EPC/Construction Contracts	Off-taker/ Government	Private	Off-taker/ Government	Off-taker/ Government	Not applicable

- Best method to fully implement PPP? BOOT? Or other?
- How do we attract private finance?
- What incentives are fair, proper and sufficient ?

Condensing Application Range

Proven geothermal impulse type steam path

Non-Condensing Application Range

Non-condensing turbines designed for geothermal combined cycle applications

SST-400 GEO Turbogenerator

SST-400 GEO

Power output: **5 – 55 MW** (condensing) **5 – 60 MW** (non-condensing)

Frequency: 50 or 60 Hz

Speed: max. 6000 rpm

Live steam: Up to 250°C (482°F)/ 12 bara

Exhaust steam: Up to 0.4 bara (condensing) Up to 1.4 bara (non-condensing)

SST-400 GEO Condensing Application

SST-400 GEO Non Condensing Application

Siemens Geothermal Combined Cycle Power Park

SST- 400 GEO Axial Exhaust - Configuration

Better exhaust efficiency

- Low profile, cost effective foundation
- Superior configuration for seismic events
- Assembled turbine can be shipped on a single truck
- Non-condensing steam path can accept large flow volumes
- High exhaust enthalpy is efficiently recovered by the ORC cycle
- Modular construction

Geothermal Combined Cycle Process

Page 41

Ormat's Mokai Geothermal Combined Cycle Plant

Siemens Geothermal Combined Cycle Power Park - **SIEMENS** Advantages

- Improved, sustainable resource utilization at least 15% more efficient than a simple cycle flash plant
- 100% brine & NCG re-injection
- Low profile, cost effective foundations for the entire plant both cycles
- Superior configuration for seismic events
- All components can be shipped to site fully assembled
- Modular construction for the entire plant
- Zero atmospheric emissions
- Sub-optimal wells can be used and zero liquid effluents

Siemens' "Net Zero" Geothermal Combined Cycle Energy Park

Page 43

Do you have any questions?

Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as "expects", "anticipates", "intends", "plans", "believes", "seeks", "estimates", "will" or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens' control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens' filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC's website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, it's affiliates or their respective owners.